Segmentation of Retinal Blood Vessels Using Gaussian Mixture Models and Expectation Maximisation
نویسندگان
چکیده
In this paper, we present an automated method to segment blood vessels in fundus retinal images. The method could be used to support a non-intrusive diagnosis in modern ophthalmology for early detection of retinal diseases, treatment evaluation or clinical study. Our method combines the bias correction to correct the intensity inhomogeneity of the retinal image, and a matched filter to enhance the appearance of the blood vessels. The blood vessels are then extracted from the matched filter response image using the Expectation Maximisation algorithm. The method is tested on fundus retinal images of STARE dataset and the experimental results are compared with some recently published methods of retinal blood vessels segmentation. The experimental results show that our method achieved the best overall performance and it is comparable to the performance of human experts.
منابع مشابه
IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملExtracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters
In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...
متن کاملDiffused expectation maximisation for image segmentation - Electronics Letters
Diffused expectation maximisation is a novel algorithm for image segmentation. The method models an image as a finite mixture, where each mixture component corresponds to a region class and uses a maximum likelihood approach to estimate the parameters of each class, via the expectation maximisation algorithm, coupled with anisotropic diffusion on classes, in order to account for the spatial dep...
متن کاملRetinal blood vessels extraction using probabilistic modelling
The analysis of retinal blood vessels plays an important role in detecting and treating retinal diseases. In this review, we present an automated method to segment blood vessels of fundus retinal image. The proposed method could be used to support a non-intrusive diagnosis in modern ophthalmology for early detection of retinal diseases, treatment evaluation or clinical study. This study combine...
متن کامل